
Note: In this problem set, expressions in green cells match corresponding expressions in the 
text answers.
Clear["Global`*⋆"]

3.  Which are the “bottleneck” edges by which the flow in example 1 is actually limited? 
Hence which capacities could be decreased without decreasing the maximum flow?

5. How does Ford-Fulkerson prevent the formation of cycles?

6 - 9 Maximum flow
Find the maximum flow by Ford-Fulkerson:

7.  In problem 15, section 23.6.

I’m not using Ford-Fulkerson, just the standard Mathematica command. Incidentally I ran 
across a statement on line that F-F incorporates a repetitive or redundant structure, and 
that both Dinic and Edmonds-Karp are improved versions of the algorithm.
g15 = Graph[

{2 & 5, 4 & 2, 4 & 3, 1 & 2, 3 & 5, 1 & 3, 1 & 4}, VertexLabels → "Name",
VertexCoordinates -−> {{0, 0}, {3, -−1}, {1.4, -−1}, {0, -−2}, {-−1.5, -−1}},
EdgeCapacity → {8, 5, 6, 4, 1, 3, 10}, EdgeWeight → {5, 3, 0, 2, 1, 1, 3},
Epilog → {{Text[Style["s", Medium], {-−1.6, -−1}]},

{Red, Text[Style["3, 1", Medium], {-−1, -−1.5}]},
{Red, Text[Style["10, 3", Medium], {-−0.5, -−0.9}]},
{Red, Text[Style["4, 2", Medium], {-−1, -−0.5}]},
{Red, Text[Style["6, 0", Medium], {0.5, -−1.5}]},
{Text[Style["t", Medium], {3.1, -−1}]},
{Red, Text[Style["5, 3", Medium], {0.6, -−0.6}]},
{Red, Text[Style["8, 5", Medium], {1.5, -−0.4}]},
{Red, Text[Style["12, 3", Medium], {1, -−1.8}]}},

ImageSize → 350, ImagePadding → 20]



gdc15 = FindMaximumFlow[Graph[
{2 & 5, 4 & 2, 4 & 3, 1 & 2, 3 & 5, 1 & 3, 1 & 4}, VertexLabels → "Name",
VertexCoordinates -−> {{0, 0}, {3, -−1}, {1.4, -−1}, {0, -−2}, {-−1.5, -−1}},
EdgeCapacity → {8, 5, 6, 4, 1, 3, 10},
EdgeWeight → {5, 3, 0, 2, 1, 1, 3}], 1, 5, "OptimumFlowData"]

OptimumFlowData Flowvalue: 9 

The green cell above contains the value in agreement with the text answer, for the flow. To 
inventory the contributions and edge structure I go on. The next cell shows what was made 
available by executing the OptimumFlowData option.
gdc15["Properties"]

{CostValue, EdgeList, FlowGraph, FlowMatrix,
FlowTable, FlowValue, Properties, ResidualGraph, VertexList}

The flow graph shows all the original edges, but the grid shows that 4!3 is not nonzero.
gdc15["FlowGraph"]

Grid[{#, gdc15[#]} & /∕@ gdc15["EdgeList"], Frame → All]

2 & 5 8
4 & 2 5
3 & 5 1
1 & 2 3
1 & 3 1
1 & 4 5

9.  Problem represented by a diagram.
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g9 = Graph[{1 & 2, 2 & 4, 4 & 6, 3 & 5, 5 & 6, 1 & 3, 5 & 2, 5 & 4, 2 & 3},
VertexLabels → "Name", VertexCoordinates -−>
{{-−2, -−1}, {0, 0}, {2.5, 0}, {4.5, -−1}, {0, -−2}, {2.5, -−2}},

EdgeCapacity → {4, 5, 10, 6, 1, 3, 3, 3, 2},
EdgeWeight → {2, 3, 4, 3, 0, 2, 2, 1, 1},
Epilog → {{Text[Style["s", Medium], {-−2.15, -−1}]},

{Red, Text[Style["3,2", Medium], {-−1.45, -−1.5}]},
{Red, Text[Style["3, 1", Medium], {2.75, -−1}]},
{Red, Text[Style["4, 2", Medium], {-−1.4, -−0.5}]},
{Red, Text[Style["1, 0", Medium], {3.55, -−1.7}]},
{Text[Style["t", Medium], {4.65, -−1}]},
{Red, Text[Style["3, 2", Medium], {1.2, -−0.75}]},
{Red, Text[Style["5, 3", Medium], {1.25, 0.1}]},
{Red, Text[Style["6, 3", Medium], {1.25, -−2.15}]},
{Red, Text[Style["10, 4", Medium], {3.95, -−0.5}]},
{Red, Text[Style["2, 1", Medium], {-−0.25, -−0.75}]}},

ImageSize → 400, ImagePadding → 35]

gdc9 = FindMaximumFlow[
Graph[{1 & 2, 2 & 4, 4 & 6, 3 & 5, 5 & 6, 1 & 3, 5 & 2, 5 & 4, 2 & 3},
VertexLabels → "Name", VertexCoordinates -−>
{{-−2, -−1}, {0, 0}, {2.5, 0}, {4.5, -−1}, {0, -−2}, {2.5, -−2}},

EdgeCapacity → {4, 5, 10, 6, 1, 3, 3, 3, 2}], 1, 6, "OptimumFlowData"]

OptimumFlowData Flowvalue: 7 

The cell above contains the calculated flow value which agrees with the text answer. In the 
diagram below, two edges do not make contributions, but are shown, I guess, for 
completeness.
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gdc9["FlowGraph"]

The grid shows how the flow reaches t. 
Grid[{#, gdc9[#]} & /∕@ gdc9["EdgeList"], Frame → All]

1 & 2 4
1 & 3 3
2 & 4 4
4 & 6 6
3 & 5 3
5 & 6 1
5 & 4 2

15. Find a minimum cut set in figure 500 and its capacity.

Get["IGraphM`"]

IGraph/∕M 0.3.110 (April 22, 2019)

Evaluate IGDocumentation[] to get started.
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g15 = Graph[{1 & 2, 2 & 3, 3 & 6, 4 & 5, 5 & 6, 1 & 4, 5 & 2, 3 & 5},
VertexLabels → "Name", VertexCoordinates -−>
{{-−2, -−1}, {0, 0}, {2.5, 0}, {4.5, -−1}, {0, -−2}, {2.5, -−2}},

EdgeCapacity → {20, 11, 13, 7, 3, 10, 4, 5},
EdgeWeight → {5, 8, 6, 4, 3, 4, 3, 2},
Epilog → {{Text[Style["s", Medium], {-−2.15, -−1}]},

{Red, Text[Style["10, 4", Medium], {-−1.45, -−1.5}]},
{Red, Text[Style["5, 2", Medium], {2.75, -−1}]},
{Red, Text[Style["20, 5", Medium], {-−1.4, -−0.5}]},
{Red, Text[Style["3, 3", Medium], {3.55, -−1.7}]},
{Text[Style["t", Medium], {4.65, -−1}]},
{Red, Text[Style["4, 3", Medium], {1.2, -−0.75}]},
{Red, Text[Style["11, 8", Medium], {1.25, 0.1}]},
{Red, Text[Style["7, 4", Medium], {1.25, -−2.15}]},
{Red, Text[Style["13, 6", Medium], {3.95, -−0.5}]}},

ImageSize → 400, ImagePadding → 35]

First I will try out the IG functions. It is necessary to move the EdgeCapacity properties 
into the EdgeWeight block, because edge weights are what IG will look for in calculating 
flows.
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g15a = Graph[{1 & 2, 2 & 3, 3 & 6, 4 & 5, 5 & 6, 1 & 4, 5 & 2, 3 & 5},
VertexLabels → "Name", VertexCoordinates -−>
{{-−2, -−1}, {0, 0}, {2.5, 0}, {4.5, -−1}, {0, -−2}, {2.5, -−2}},

EdgeCapacity → {20, 11, 13, 7, 3, 10, 4, 5},
EdgeWeight → {20, 11, 13, 7, 3, 10, 4, 5},
Epilog → {{Text[Style["s", Medium], {-−2.15, -−1}]},

{Red, Text[Style["10, 4", Medium], {-−1.45, -−1.5}]},
{Red, Text[Style["5, 2", Medium], {2.75, -−1}]},
{Red, Text[Style["20, 5", Medium], {-−1.4, -−0.5}]},
{Red, Text[Style["3, 3", Medium], {3.55, -−1.7}]},
{Text[Style["t", Medium], {4.65, -−1}]},
{Red, Text[Style["4, 3", Medium], {1.2, -−0.75}]},
{Red, Text[Style["11, 8", Medium], {1.25, 0.1}]},
{Red, Text[Style["7, 4", Medium], {1.25, -−2.15}]},
{Red, Text[Style["13, 6", Medium], {3.95, -−0.5}]}},

ImageSize → 400, ImagePadding → 35]

Then I can call the functions. The IG functions make the same cut as the text answer, and 
come up with the same flow.
IGMinimumCut[g15a, 1, 6]

{2 & 3, 5 & 6}

IGMinimumCutValue[g15a, 1, 6]

14.

I still want to take a look at using the Mathematica graph toolset. For this I modify the 
graph to simply drop the edge weights, since Mathematica will not look at them anyway.
Clear["Global`*⋆"]

g155 = Graph[{1 & 2, 2 & 3, 3 & 6, 4 & 5, 5 & 6, 1 & 4, 5 & 2, 3 & 5},
VertexLabels → "Name", VertexCoordinates -−>
{{-−2, -−1}, {0, 0}, {2.5, 0}, {4.5, -−1}, {0, -−2}, {2.5, -−2}},

EdgeCapacity → {20, 11, 13, 7, 3, 10, 4, 5},
ImageSize → 400, ImagePadding → 35];

I use FindMaximumFlow with OptimumFlowData so I can get the full menu of available 
properties. Mathematica reports the maximum flow.
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I use FindMaximumFlow with OptimumFlowData so I can get the full menu of available 
properties. Mathematica reports the maximum flow.
g156 = FindMaximumFlow[

Graph[{1 & 2, 2 & 3, 3 & 6, 4 & 5, 5 & 6, 1 & 4, 5 & 2, 3 & 5},
VertexLabels → "Name", VertexCoordinates -−>
{{-−2, -−1}, {0, 0}, {2.5, 0}, {4.5, -−1}, {0, -−2}, {2.5, -−2}},

EdgeCapacity → {20, 11, 13, 7, 3, 10, 4, 5}], 1, 6, "OptimumFlowData"]

OptimumFlowData Flowvalue: 14 

I call for an edge list. 
g156["EdgeList"]

{1 & 2, 1 & 4, 2 & 3, 3 & 6, 4 & 5, 5 & 6, 5 & 2}

and a flow graph.
g156["FlowGraph"]

I make a grid of the contributing edges and their contributions to the flow. The ghostly 
edge 3!5 is not represented in the non-zero contribution list. From the grid, I see that I 
could either cut the graph to get the 14 flow units from 2!3+5!6 or from 1!2+4!5.
Grid[{#, g156[#]} & /∕@ g156["EdgeList"], Frame → All]

1 & 2 7
1 & 4 7
2 & 3 11
3 & 6 11
4 & 5 7
5 & 6 3
5 & 2 4

I let Mathematica choose the cut. Mathematica chooses to get the 14 flow from 1!2 + 4!
5.
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FindMinimumCut[
Graph[{1 & 2, 2 & 3, 3 & 6, 4 & 5, 5 & 6, 1 & 4, 5 & 2, 3 & 5},
VertexLabels → "Name", VertexCoordinates -−>
{{-−2, -−1}, {0, 0}, {2.5, 0}, {4.5, -−1}, {0, -−2}, {2.5, -−2}},

EdgeCapacity → {20, 11, 13, 7, 3, 10, 4, 5}]]

{0, {{2, 3, 6, 5}, {1, 4}}}
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